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Abstract

The zero-temperature Glauber dynamics of the ferromagnetic Ising model on
small-world networks, rewired from a two-dimensional square lattice, has been
studied by numerical simulations. For increasing disorder in finite networks,
the nonequilibrium dynamics becomes faster so that the ground state is found
more likely. For any finite value of the rewiring probability p, the likelihood of
reaching the ground state goes to zero in the thermodynamic limit, similarly to
random networks. The spin correlation ξ(r) is found to decrease with distance
as ξ(r) ∼ exp(−r/λ), λ being a correlation length scaling with p as λ ∼ p−0.73.
These results are compared with those obtained earlier for addition-type small-
world networks.

PACS numbers: 64.60.De, 05.50.+q, 05.70.Ln, 89.75.Hc

1. Introduction

In recent years, researchers have accumulated evidence that various kinds of complex systems
can be described in terms of networks or graphs, where nodes play the role of system units and
edges represent interactions between connected pairs of units. Thus, complex networks have
been used to model several types of real-life systems and to study various processes taking
place on them [1–5]. In this context, some models of networks have been designed to explain
empirical data in several fields (sociology, economy, biology, technology), as is the case of
the so-called small-world networks, introduced by Watts and Strogatz in 1998 [6].

This kind of small-world networks are well suited to describe properties of systems with
underlying topological structure ranging from regular lattices to random graphs [7, 8], by
changing a single parameter [9]. They consist of a regular lattice, in which a fraction p of
the bonds between nearest-neighbor nodes is replaced by new random links, thus creating
long-range ‘shortcuts’ [6, 9]. This procedure generates networks in which one finds at the
same time a local neighborhood (as in regular lattices) and some global properties of random
graphs, as a small mean distance between pairs of sites. This short global length scale has
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been found to be relevant for several statistical physical problems on small-world networks,
such as spread of infections [10, 11], signal propagation [6, 12–14] and information spreading
[15–20].

Cooperative phenomena in this kind of networks display unusual characteristics,
associated with their peculiar topology [21–27]. Thus, a paramagnetic–ferromagnetic phase
transition of mean-field type at finite temperature was found for the Ising model on small-world
networks derived from one-dimensional (1d) [21, 28, 29], as well as from 2d and 3d regular
lattices [30, 31].

While the single-spin-flip Glauber dynamics at finite temperatures reaches the state given
by thermodynamic equilibrium, the situation at zero temperature is not so clear. In fact, it has
been shown that nontrivial phenomena appear, even for regular lattices [32–35]. In d = 1
one reaches the ordered ground state, but for higher dimensions the system may get stuck
in a frozen state with domains of opposite magnetization [35]. The Glauber dynamics has
also been investigated on various types of complex networks, in particular in small-world
networks [36, 37], Erdös–Rényi random graphs [38–40] and scale-free networks [39–42]. In
these cases, the system may become trapped in a set of ordered domains, without reaching
a fully ordered state, even at finite system size. Analytical calculations, in particular, have
been carried out to study several characteristics of this zero-temperature dynamics on regular
lattices [32, 33, 43, 44] and complex networks [38, 39, 42]. A comparison with numerical
simulations has shown that mean-field-type descriptions may be inappropriate to describe this
problem [42].

Here we consider the zero-temperature Glauber dynamics in small-world networks rewired
from a 2d square lattice. This allows us to study the evolution of the system from a regular
lattice to a random network by changing the rewiring probability p. Earlier works considered
networks in which links were added to the regular lattice, so that a random network was not
approached in the limit of large disorder [36, 37]. We will look for similarities and differences
between the spin dynamics on these ‘addition-type’ networks and those studied here. A
question of particular interest is whether for a small disorder (p � 1) the system behaves like
a random network, or on the contrary it keeps some characteristics of the regular lattice.

This paper is organized as follows. In section 2, we describe the model employed in
this paper. In section 3, we discuss the ordering process, presenting results for the fraction
of ordered and active runs, as well as the ordering time. In section 4, we give results for the
active links, and in section 5 we present the spin correlation. In section 6, we discuss the
effect of the initial magnetization on the system evolution. The paper closes with a summary
in section 7.

2. Model

To generate our networks, we start from a two-dimensional square lattice. Contrary to the 1d
chain, it is known that in 2d lattices the zero-temperature Glauber dynamics may get stuck in
a frozen state without reaching the ground state (a ferromagnetic state, with all spins parallel),
which makes the dynamics nontrivial [34, 35]. Small-world networks were built up according
to the model of Watts and Strogatz [6, 9], i.e., we considered in turn each of the bonds in
the starting 2d lattice and replaced it with a given probability p by a new connection. In this
rewiring process, one end of the selected link is changed to a new node chosen at random
in the whole network. We impose the conditions: (i) no two nodes can have more than one
bond connecting them, (ii) no node can be connected by a link to itself and (iii) each node
has at least two connections. By this method, we obtained networks where more than 99.9%
of the sites were connected in a single component. Moreover, this rewiring procedure keeps
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the total number of links constant in the rewired networks so that we may have an average
degree 〈k〉 = 4 irrespective of the rewiring probability p. This allows us to study the effect
of disorder on the properties of the model, without changing the mean connectivity. For
networks generated in the present way, there is a p-dependent crossover size that separates the
large- and small-world regimes, and the small-world behavior appears for any finite value of
p (0 < p < 1) as soon as the network is large enough [45, 46]. All networks considered here
are in the small-world regime [13, 30].

We note that other ways of generating small-world networks from regular lattices have
been proposed [47, 48]. In particular, instead of rewiring each bond with probability p, one can
add shortcuts between pairs of sites taken at random, without removing bonds from the regular
lattice. This method turns out to be more convenient for analytical calculations, but does not
keep the mean degree 〈k〉 constant, which in this case increases with p. The zero-temperature
Glauber dynamics of the Ising model has been studied earlier on these ‘addition-type’ small-
world networks. Thus, Boyer and Miramontes [36] studied interface motion and pinning in the
limit p � 1, whereas Das and Sen [37] considered densely connected small-world networks,
generated from one-dimensional rings.

From the 2d square lattice, we generated small-world networks of different sizes
N = L × L. For convenience, we will employ later L instead of N to indicate the system size
in some plots. The largest networks used here included N = 400×400 nodes. We considered
periodic boundary conditions for the starting regular lattice, and then the rewiring process
was carried out in a way similar to that described in [6]. Each network is characterized by its
adjacency matrix Aij, where Aij = 1 if nodes i and j are connected by a link, and Aij = 0
otherwise. For a given network, we consider an Ising model with spin variables Si = ±1
(i = 1, . . . , N ) located on the nodes of the network, i.e., we have a Hamiltonian:

H = −
∑
i<j

AijSiSj . (1)

This means that each edge in the network represents a ferromagnetic interaction between spins
on the two linked nodes. The spin configuration evolves in time, and at a given time t, each
site i experiences a local field hi(t) due to the spins located at its nearest-neighbor nodes:

hi(t) =
∑

j

AijSj (t). (2)

The zero-temperature Glauber dynamics is then defined as follows. At time step t + 1 one
selects at random a node from a uniform probability distribution, i.e. all nodes are equally
likely to be selected, irrespective of the particular properties of each one, such as its degree
k. Note that other ways of choosing the nodes, as a deterministic sweep, or according to a
degree-dependent probability distribution, introduce an undesired bias in the spin dynamics.
Once a node is selected, the value of its spin is updated according to the local field, namely,

Si(t + 1) =
⎧⎨
⎩

+1 if hi(t) > 0
−1 if hi(t) < 0
±1 with probability 1

2 if hi(t) = 0.

(3)

We will measure time as the number of attempted updates per node, Ns = t/N (simulation
sweeps), so that on average each node tries to change its state once per simulation sweep.
Several variables characterizing the considered model have been calculated and averaged for
different values of p. In general, we have considered 1000 simulation runs for each rewiring
probability p, but in some cases we carried out up to 5000 runs to improve the precision of our
results, in particular to determine the average number of active links (see below). We started
the simulations by assigning to each node a spin +1 or −1 with 50% probability. In section 6,
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Figure 1. Fraction of active spin configurations versus the number of simulation sweeps, Ns , for
several values of the rewiring probability p. From top to bottom: p = 0.1, 0.3, 0.5, 0.7 and 1. Data
correspond to simulations on networks with 6400 nodes.

however, we consider the effect of having a starting finite magnetization on the evolution of
the system. For each run considered, the simulation proceeds while the energy of the system
is changing, and stops when it is constant for a long simulation interval. This interval is taken
to be equal to 2000N attempted spin updates, i.e., 2000 simulation sweeps. This is what we
will call in the following, the infinite-time limit, to distinguish it from the simulation times at
which the system energy is still changing.

3. Ordering process

For the zero-temperature Glauber dynamics on the 2d square lattice, it is known that the
system reaches either a frozen stripe state with probability ≈1/3 or the ordered ground state
with probability ≈2/3 [35]. For small-world networks, we find that the fraction of ordered
configurations depends markedly on the rewiring probability. We will call active runs those
that have not reached the ground state at a given simulation time. For a given parameter
set (p,N ), we will denote the fraction of active runs by xa. In figure 1, we display xa as
a function of the number of simulation sweeps, for several values of p. These results were
obtained by averaging in each case over 1000 spin configurations on networks including
6400 nodes. From these results, we observe that the system gets ordered more frequently as
the rewiring probability increases. In fact, for p = 0.1 we find at large simulation times a
fraction of active spin configurations larger than 0.99, i.e. a fraction of ordered configurations
less than 0.01. By comparing with the known result for the regular lattice (p = 0), this means
that a small fraction of rewired links is enough to keep the system with a large probability
in a disordered configuration. This is in line with the result found in [36] for addition-type
small-world networks, in the sense that nodes with long-range connections strongly affect the
motion of interfaces and thus inhibit reaching the ground state.

For larger p the underlying regular lattice is progressively destroyed, approaching a
random network in the limit p → 1. For random networks, it is known that the long-time
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Figure 2. Fraction of simulation runs reaching the ground state versus network size N in the limit
of infinite simulation time. Each kind of symbols indicates a rewiring probability p. From top to
bottom: p = 1, 0.7, 0.5, 0.3 and 0.1. Lines are guides to the eye. Error bars are on the order of the
symbol size.

behavior of the model is very different from that of the 2d square lattice. For such networks,
the probability of the system reaching the ground state goes to zero in the large-network limit
(N → ∞) [38]. In figure 1, one also observes that the typical ordering time for small-world
networks decreases as the rewiring probability is raised. This is general for different network
sizes, as will be discussed below.

For finite networks, it is interesting to check the crossover from the properties of the
regular lattice to those characterizing the small-world regime. This crossover will happen at a
rewiring probability pc that depends on the system size, and decreases as the system size rises
(for N → ∞, pc → 0). Thus, for the system size N = 6400 considered in figure 1, one has
a change in the fraction of active networks at large time, xa, from ≈1/3 for the square lattice
(p = 0) to 0.99 for p = 0.1. This means that there is a fast change of xa in this region, due to
the onset of the small-world regime. We have checked that, in fact, the crossover appears for
this system size at pc ≈ 0.02.

In figure 2, we show the fraction of ordered configurations, 1 − xa , as a function of the
network size N, in the limit of large simulation time. We display in a semi-logarithmic plot
results for various values of the rewiring probability, between p = 0.1 and p = 1. In all cases,
the probability of a spin configuration reaching the ground state decreases exponentially as
the network size increases, and the system remains trapped in spin configurations with part
of the nodes with Si = 1 and the rest with Si = −1. This behavior is similar to that
observed for the Glauber dynamics in random networks at T = 0. In fact, Svenson [49]
has noticed a freezing in a disordered state for Glauber dynamics on random graphs. This
problem was considered analytically by Häggström, who showed that the dynamics fails to
reach the ordered ground state in random networks in the large-size limit N → ∞ [38]. It is
important to emphasize the change in xa from the regular lattice to small-world networks in
the thermodynamic limit. In fact, xa changes from ≈1/3 for the square lattice (p = 0) to 1 for
any rewiring probability p > 0. The small-world topology thus precludes the system from
reaching the ordered ferromagnetic state in the large-size limit. The similarity of our results
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Figure 3. Mean ordering time as a function of network size for several values of the rewiring
probability p. Symbols indicate results derived from zero-temperature simulations. From left to
right: p = 0 , 0.1, 0.2, 0.3, 0.5 and 1.

for rewired small-world networks with those found for random networks is a difference with
addition-type networks, since in the latter the connections in the underlying regular lattice are
preserved for any value of p, and one does not recover the behavior of random networks.

Another interesting quantity is the mean ordering time of the system, No. It is defined
as the average simulation time employed by the system to reach a ground-state configuration,
calculated for the runs that actually become ordered. The mean ordering time is displayed
in figure 3 as a function of the network size for several values of p, between 0 and 1. For a
given rewiring probability, No increases linearly with L, i.e. No ∼ √

N . For a given network
size, the system gets ordered faster for larger p. This means that for small p there appear
less ordered configurations (see figure 2), and those that appear take longer times to reach the
ground state. This is an interesting difference between the behavior of xa and No for small p.
For a given network size, No evolves in a continuous manner from p = 0 to p = 1, as shown
in figure 3. However, the fraction of active runs xa for p = 0 behaves in a way different from
that for p > 0, since in the former case xa converges to ≈1/3 as the network size increases
[35, 50], and in the latter xa → 1 in the large-size limit (see above).

4. Active links

The failure of the system to reach an ordered state for system size N → ∞ could be due to
the presence of small clusters (communities) of nodes tightly connected with each other, but
loosely linked to the rest of the network. Such clusters could become ordered independently of
the rest of the system, thus giving a disordered state and hindering the reach of the ground state.
This is the mechanism discussed in [39] in connection with the Glauber dynamics on random
networks. To address the validity of this assumption, it is useful to consider the active links
in a network, defined as those connecting nodes with opposite values of Si. In the following,
we will call xl the fraction of active links, averaged over active runs. The evolution of xl
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Figure 4. Fraction of active links in active runs as a function of the number of simulation sweeps.
Lines correspond to various values of the rewiring probability p. From top to bottom: p = 1, 0.7,
0.6, 0.5, 0.1 and 0. These data correspond to simulations on networks with 6400 nodes.

along the simulation runs is shown in figure 4 for various values of the rewiring probability
and networks including 6400 nodes. We note first that, for a given simulation time Ns, the
fraction of active links increases as p is raised. For p � 0.5, xl decreases as time proceeds
and eventually converges to a finite value. For p > 0.5 we find a decrease in xl at short times,
reaching a minimum for Ns ∼ 100, and rising latter to saturate to a finite value at large times.
In principle, for the ordering process advancing as time proceeds, the number of active links in
active configurations decreases, as found for p < 0.5. However, a fast decrease in the fraction
of active runs can cause a rise in xl, since the latter is calculated over runs still active, and those
getting ordered are expected to have few active links. In fact, the minimum in xl observed for
p > 0.5 occurs at the same simulation times as the fast decrease in xa shown in figure 1. This
minimum in xl is reminiscent of that found by Castellano et al [39] for random networks with
average degree 〈k〉 = 7.

The long-time value of xl is shown in figure 5 as a function of the rewiring probability p
for three different system sizes. Symbols indicate results of our simulations: squares for L =
100, circles for L = 300 and triangles for L = 400. For L = 100 we find that xl increases with
p, but has a plateau at intermediate values of the rewiring probability. This plateau, however,
seems to be a finite-size effect, since it tends to disappear as the network size is increased.
In fact, for L = 400, it is almost inappreciable; one has a fast rise in the fraction of active
links xl between p = 0 and p ≈ 0.3, and the rise is much slower for p > 0.4. Finally, in the
large-disorder limit (p = 1) xl converges to a value of about 0.17, irrespective of the system
size L. Interestingly, a clear finite-size effect appears for intermediate values of p, but is very
small in both limits p → 0 (regular lattice) and p → 1 (random networks). Close to p = 0
we find a linear increase in xl, with a slope dxl/dp = 1.02 ± 0.02.

We now go back to the question posed above on the presence of small clusters of nodes
that could get ordered independently of the rest of the network. If this was the reason for
avoiding the full ordered state, one would expect to find a small fraction of active links, which
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Figure 5. Fraction of active links in active runs versus rewiring probability p, in the limit of
infinite simulation time. Symbols represent results of simulations for networks with different
sizes: squares, L = 100; circles, L = 300; triangles, L = 400. Error bars are on the order of the
symbol size. Lines are guides to the eye.

should decrease for rising network size. This is not the case, as shown by our results displayed
in figure 5. In line with this, we have also observed in our simulations that the long-time
magnetization goes to zero when the system size increases, as expected for the presence of
different large ordered regions in the network. This conclusion agrees with that given in [39]
for random networks, but here it extends to small-world networks in the whole range from
p = 0 to 1.

In connection with this, it is important to question whether the disordered (metastable)
state reached after a long simulation time is a frozen state or not. In our simulations, we
find that the disordered state is active, in the sense that some spins continue flipping forever,
without changing the energy of the system. Both spin states (+1 and −1) coexist, with several
connected domains of identical spins. The continuous flipping happens at the borders of these
domains. This behavior is similar to that observed for regular lattices for d > 2 and for
random networks [39]. This means that a small fraction of rewired links (p � 1) is enough
to recover the behavior of random networks, instead of the freezing observed for the Glauber
dynamics on the 2d square lattice [35].

5. Spin correlation

From the results presented above, it is clear that the fraction of ordered configurations on small-
world networks goes to zero in the large-size limit, and thus the ground state is not reached
in the thermodynamic limit. A direct way of displaying the lack of long-range ferromagnetic
ordering is by looking at the spin correlation versus distance for various values of the rewiring
probability p. We define ξ as

ξ(r) = 〈SiSj 〉r , (4)

where the subscript r indicates that the average is taken for the ensemble of pairs (i, j) of sites
at distance r. Note that r = d/d0 refers here to the dimensionless distance between sites in
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Figure 6. Spin correlation ξ(r) versus distance r for active runs on small-world networks with
9 × 104 nodes, in the limit of large simulation time Ns → ∞. Error bars are on the order of the
symbol size.

the starting regular lattice, not to the actual topological distance or minimum number of links
between nodes in the rewired networks (d0 is the distance between nearest neighbors). The
correlation ξ(r) in the long-time limit is shown in figure 6 for several values of the rewiring
probability p. After a short transient for small r, ξ(r) displays an exponential decrease for
increasing distance. At distances longer than those shown in figure 6, ξ(r) saturates to a
constant value, which is a finite-size effect and should disappear in the limit N → ∞. Note
that the results displayed in figure 6 correspond to values of the rewiring probability p � 1.
For larger p, the decrease in ξ(r) as a function of distance is very fast.

According to the results shown in figure 6, we find a region where the spin correlation
scales as ξ(r) ∼ exp(−r/λ), with a correlation length λ dependent on the rewiring probability
p. This dependence of λ on p is shown in figure 7 in a logarithmic plot, where one observes
that the correlation length follows over two decades a power law λ ∼ p−a , with an exponent
a = 0.73 ± 0.02.

Boyer and Miramontes [36] interpreted the presence of different spin domains on their
addition-type small-world networks in terms of the ‘influent’ nodes. These are nodes that have
long-range connections and strongly affect the motion of domain interfaces. Moreover, they
argued that the exponent a should be 2/3, on the basis of the random distribution of influent
nodes over the square lattice. In fact, they found a value a = 0.64 from their numerical
simulations, close to 2/3. The exponent yielded by our simulations on rewired networks is
somewhat higher. This can be understood by taking into account that in our case the influent
nodes play a role similar to that played in addition-type small-world networks, but also
connections in the underlying lattice are progressively destroyed as the rewiring probability
increases. This affects the correlation between sites in the lattice, which is effectively reduced
and the exponent a increases with respect to that expected for the full square lattice (λ decreases
faster for rising p).

9
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Figure 7. Correlation length λ versus rewiring probability in a logarithmic plot. Data points were
obtained from the decay of the spin correlation ξ(r) with distance, for networks including 9 × 104

nodes, in the limit of large simulation time Ns → ∞. Error bars are on the order of the symbol
size.

6. Influence of initial conditions

The results shown above were obtained for initial spin configurations with zero average
magnetization (spins with 50% probability for +1 and −1). One can also consider starting
spin configurations with different probabilities for spins +1 and −1, and study the evolution
of the system under the Glauber dynamics at T = 0. A study of the effect of initial conditions
on this type of dynamics in various kinds of complex networks has been carried out earlier by
Uchida and Shirayama [40]. These authors emphasized that both the initial conditions and the
network structure are equally relevant to determine the evolution of the system. This evolution
may be nontrivial, mainly in the presence of nodes with large degree, as happens in scale-free
networks.

We now consider initial configurations on our small-world networks, where the probability
f+ of Si = +1 is higher than 0.5, and study their evolution with time. In figure 8 we show the
fraction of active links as a function of the network size for several values of f+ between 0.5
and 0.6. These results were obtained for a rewiring probability p = 0.1 and in the long-time
limit Ns → ∞. For f+ = 0.5 (random initial configuration), the fraction xl converges to a
finite value as the network size increases, as shown above. For f+ > 0.5, however, xl decreases
exponentially as N is raised, indicating that the system evolves to a single ordered domain,
eventually converging to the ground state.

To check this point, we have calculated the average magnetization M over active networks
as a function of the system size. We define M as M = 〈|M|〉ac, with M = ∑

i Si . In figure 9,
we show M for the same rewiring probability and f+ values shown in figure 8. Again the results
correspond to the long-time limit. For random initial conditions, the average magnetization
decreases and goes to zero for N → ∞, as indicated above (for L = 300, we find M = 0.057,
not shown in the figure). On the contrary, for f+ > 0.5, the average magnetization increases
as the network size is raised, converging to the value expected for the fully ordered system
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Figure 8. Fraction of active links versus network size for several values of the initial magnetization.
Symbols indicate results derived from simulations for a rewiring probability p = 0.1, in the limit of
infinite simulation time. From top to bottom: f+ = 0.5, 0.52, 0.53, 0.55 and 0.6. For f+ > 0.6, xl

decreases very fast for increasing network size (not shown).

(M = 1). This is consistent with the decrease observed in the fraction of active bonds xl

for rising N, shown in figure 8. Moreover, this behavior is reminiscent of that observed for
random networks in [40], in the sense that a small finite value of the starting magnetization is
enough to drive the system to an ordered state. Such an evolution can be different for other
kinds of complex networks [40].

Uchida and Shirayama [40] found that, depending on the type of network, the final
dynamics may reach a metastable state involving two coexistent spin states with several
connected domains of identical spins, the marginal vertices of which flip continuously. This
is in fact the behavior found for our small-world networks and presented above for random
initial conditions (f+ = 0.5) in section 4. For f+ > 0.5, however, we have found that the
system converges to an ordered state in the thermodynamic limit N → ∞ (M → 1), but has a
finite probability of being disordered for any finite size. Both figures 8 and 9 indicate that, for
a given value f+ > 0.5, the appearance of a single spin domain is favored as the system size
increases. However, the convergence to the ordered state for increasing system size is fast for
f+ > 0.6, but becomes very slow as one approaches the random initial conditions, and finally
the system remains in a disordered state for f+ = 0.5 and N → ∞ (see above). Note that
for f+ > 0.5 the behavior of the system is opposite to that shown above for f+ = 0.5, in the
sense that for random initial conditions the system reaches the ground state less frequently for
increasing size N (see also the increase in xl shown in figure 8 for f+ = 0.5 and decrease in M

in figure 9, as N rises).

7. Summary

We have studied numerically the Glauber dynamics of the ferromagnetic Ising model on small-
world networks, generated by rewiring links in a two-dimensional square lattice. We have
found that the behavior of the model departs from that known for the regular lattice, even for a
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Figure 9. Average magnetization M of spin configurations in active runs as a function of network
size, for various values of the initial magnetization. Symbols show results derived from simulations
on networks with a rewiring probability p = 0.1, in the limit of infinite simulation time. From top
to bottom: f+ = 0.6, 0.55, 0.53, 0.52 and 0.5. For f+ > 0.6,M converges fast to 1 for increasing
network size (not shown). Dashed lines are guides to the eye.

small fraction of rewired links. In fact, for any rewiring probability p, the fraction of ordered
runs for large time (Ns → ∞) and large system size (N → ∞) goes to zero, contrary to the
regular lattice, where this fraction converges to a finite value (≈2/3). For finite networks, the
system gets ordered more frequently as the rewiring probability increases and one approaches
a random network.

The spin correlation on the underlying lattice is found to decrease as ξ(r) ∼ exp(−r/λ),
with a correlation length that depends on the rewiring probability as λ ∼ p−0.73. The exponent
giving the dependence of λ on p is close to but different from that derived earlier for addition-
type small-world networks.

We have analyzed the influence of the initial conditions on the behavior of the system.
We found that for any small deviation from random initial conditions, the system evolves to
the ordered state in the limit of large system size and simulation time, contrary to the behavior
obtained from random initial conditions.

The apparently simple Glauber dynamics at T = 0 displays a nontrivial behavior that
depends upon the type of network on which it is defined. This is true even for regular lattices
with d > 1. For small-world networks rewired from 2d lattices, we find a behavior of the
Glauber dynamics similar to that corresponding to random networks. This refers in particular
to the nature of the disordered state obtained at long times, which is characterized by the
presence of ordered regions, with spins at the interfaces between domains flipping forever
without changing the energy. This behavior is different from the frozen state reached for 2d
regular lattices, but is reminiscent of that for lattices with dimensionality larger than 2. An
important result is that for our small-world networks, a small fraction of disorder (in fact any
rewiring probability p > 0) is enough to recover the behavior known for random networks.

For small-world networks generated from lattices with a dimensionality different from 2,
we expect a behavior qualitatively similar to that presented here for d = 2. However, the actual
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details of the nonequilibrium ordering process on these networks may depend on d. Also,
the behavior of the model for generalized random networks may display some characteristics
different than Erdös–Rényi networks. These points require further investigation and remain a
challenge for future research.
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